Advanced Genetic Studies Seek to Enhance Carbon Sequestration in Plants and Soils

Stan Wullschleger

(presented by Robin Graham)

Environmental Sciences Division

Oak Ridge National Laboratory

WullschlegSD@ornl.gov

Carbon Sequestration Conference, 2005

Project Goal

Understand the fundamental genetic and molecular controls on plant-based processes that are important for carbon sequestration in terrestrial ecosystems.

Primarily focus on

Biomass distribution and tissue chemistry

Photosynthesis

ORNL 2002-02220/gss

Carbon Sequestration

Is there genetic variation in allocation and chemistry traits?

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

UT-BATTELLE

Breeding as a tool to explore genetic variation in traits of interest

Process/Trait of Interest

UT-BATTELLE

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Technical Approach

Through QTL analysis determine if observed trait variation is statistically related to genetic markers (regions of the chromosomes)

If yes, then

- 1) the trait is under genetic control and can be "bred" for
- 2) further research can discover & describe the genes

Populus as a Model Organism

- Cottonwoods
- Aspens

Clonal propagation

• 6 to 10 year rotation

Planting and Harvest

of F2 populations

Harvest of Two-Year-old Plants

Biomass Distribution

Distribution of above- and below- ground biomass varies widely among individuals.

Biomass Distribution

Some genotypes allocate biomass preferentially to either shoots or roots.

Tissue Chemistry

Lignin concentration of stems and roots also varies among individuals within the F2 populations.

Tissue Chemistry

Nitrogen, carbon, and C/N ratio varies among individuals within F2 population.

Do carbon allocation and tissue chemistry genes exist within the *Populus* genome?

Yes, observed variations in traits could be correlated with 31 locations on the genome. Also, chemistry and allocation patterns were not correlated

Conclusions

- 1. Significant variability in dry mass distribution above- and below-ground.
- 2. Significant variability in tissue chemistry.
- 3. Traits are under genetic control.
- 4. These QTLs can be used in gene discovery.
- 5. Genetic variation in biomass distribution and tissue chemistry suggest that advanced breeding and marker-aided selection can be used to enhance carbon sequestration in terrestrial ecosystems.

Acknowledgements

Research sponsored by the DOE Office of Science, Office of Biological and Environmental Research, Carbon Sequestration Program

